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Abstract: This paper provides insights into the captivating field of motor imagery classification within Brain-Computer 
Interfaces (BCI). BCIs enable direct human-machine interaction through cognitive processes, with EEG signals decoding 
mental intentions with precision. Distinct EEG patterns offer valuable insights, promising intuitive BCI systems. This 
technology could revolutionize assistive tech, neurorehabilitation, and human-computer interaction. The paper outlines 
our research project, covering motor imagery experiments, data processing, and the development of EEG signal 
interpretation models, including feature extraction, algorithms, optimization, and rigorous testing methodologies. 
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1. Introduction 

The primary objective of this research is to advance 
the field of motor imagery (MI) classification by 
accurately categorizing EEG data obtained from 
participants during cognitive tasks into specific MI task 
categories related to bodily movements. EEG signals, 
recorded through scalp electrodes, provide sequential 
data from multiple participants engaged in these trials 
[1]. The MI classification domain has witnessed 
significant progress, driven by innovative 
methodologies designed to enhance precision and 
efficiency. 
 

Researchers have explored diverse techniques to 
address the intricacies of MI classification, such as deep 
domain adaptation, Bayesian convolutional neural 
networks, and discriminative SPD feature learning 
[2][3][4]. Hybrid models have also emerged, including 
transfer learning-based CNN and LSTM hybrids, as 
well as ETSNet for EEG-based temporal-spatial pattern 
recognition [8][9]. Additional avenues of exploration 
encompass multiwavelet-based sparse time-varying 
autoregressive modelling, multivariate variational mode 
decomposition, and real-time single-trial EEG analysis 
[10][11][12]. 

 Recent studies have leveraged convolution, 
attention mechanisms, autoencoders, and channel selection 
to enhance MI classification accuracy [16][17][18]. In this 
research project, we contribute to this body of work by 
investigating novel methods and techniques for MI 
classification. Through meticulous data preprocessing, 
feature engineering, model development, and fine-tuning, 
we aim to push the boundaries of EEG-based MI 
classification. Our strategic allocation of data for final 
testing ensures the robustness and generalizability of our 
models, aligning with the broader goal of enhancing brain-
computer interfaces (BCIs) in the context of motor imagery. 

 

2. Dataset 

Obtaining a sufficiently large and well-annotated EEG 
dataset for Brain-Computer Interface (BCI) research 
presents significant challenges due to the labor-intensive 
data collection process and the associated expenses [2]. For 
the purposes of our experimental analysis, we utilized the 
PhysioNet database [19], which offers a valuable resource 
for EEG data. The dataset is provided in EDF+ format and 
encompasses 64 EEG signals, each sampled at 160 samples 
per second, accompanied by an annotation channel. 

The data collection involved subjects performing 
various motor and imagery tasks while utilizing the 
BCI2000 system. Each subject participated in 14 
experimental runs, which comprised two one-minute 
baseline runs (one with eyes open and one with eyes closed), 
as well as three two-minute runs for each of the following 
four tasks: 

1. Fist Movement Task: A target appeared on either the 
left or the right side of the screen, prompting the 
subject to open and close the corresponding fist until 
the target disappeared, followed by relaxation. 

2. Fist Movement Imagery Task: as the previous task, a 
target appeared on the left or right side of the screen. 
However, in this case, the subject imagined opening 
and closing the corresponding fist until the target 
disappeared, followed by relaxation. 

3. Foot Movement Task: A target emerged either at the 
top or bottom of the screen. The subject was instructed 
to open and close both fists (if the target was at the 
top) or both feet (if the target was at the bottom) until 
the target disappeared, and then relax. 

4. Foot Movement Imagery Task: In a manner akin to 
the previous task, a target appeared at the top or 
bottom of the screen, prompting the subject to imagine 
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opening and closing either both fists (if the target was 
at the top) or both feet (if the target was at the bottom) 
until the target disappeared, followed by relaxation. 

These tasks are summarized in Table 1 for reference 
and provide a rich dataset for investigating motor imagery 
classification within the domain of BCIs. 

 TABLE 1 DETAILS OF VARIOUS TASKS IN THE DATASET 

Task Subject Experiment 

Task 1 open and close left or right fist 

Task 2 imagine opening and closing left or right fist 

Task 3 open and close both fists or both feet 

Task 4 imagine opening and closing both fists or both 

  
Fig. 1.  EEG Electrode System 10-10 

 
The EEG Electrode System 10-10 represents a widely 

accepted global standard for meticulous electrode placement 
during EEG recordings. This system is distinguished by its 
precise arrangement of electrodes at predetermined positions 
on the scalp, thereby ensuring consistent and reproducible 
measurements across individuals. The nomenclature "10-10" 
signifies that electrodes are situated at 10% and 20% 
intervals along both the anterior-posterior (AP) and right-left 
(RL) dimensions of the head, establishing a standardized 
and methodical framework for the positioning of EEG 
electrodes. This systematic approach enhances the reliability 
and comparability of EEG data acquisition across diverse 
research studies and participants.  

 

3. Project Overview 

In our pursuit of achieving robust motor imagery 
classification, our project unfolded through a series of 
foundational stages, each meticulously designed to enhance 
the effectiveness of our classification framework: 

 
 
 

3.1 Data Collection and Preprocessing  

We initiated the project by gathering motor imagery data, 
prioritizing data integrity through essential preprocessing 
steps. These steps encompassed data parsing, filtering, and 
resampling from 160 Hz to 128 Hz. To ensure consistency 
for subsequent analyses, we consolidated raw data files into 
a single dataset and extracted event annotations. 
Subsequently, we segmented the data into epochs, each 
spanning a 5-second window around the targeted motor 
imagery action, thus ensuring an equitable distribution of 
events. 

3.2 Data Augmentation  

Our data augmentation strategy introduced variability 
into the dataset, enriching model generalization capabilities. 
A key technique involved random segment trimming before 
and after the action period, mimicking variations in the 
timing of motor imagery actions. This approach provided 
the models with a diversified set of training examples, 
fortifying their robustness to cope with real-world scenarios 
where action timing may vary. 

3.3 Model Training 

We partitioned the data into training (80%) and 
validation (20%) sets, laying the foundation for model 
development. Exploring various deep learning architectures, 
including Long Short-Term Memory (LSTM), Bidirectional 
LSTM (Bi-LSTM), Convolutional Neural Networks (CNN), 
and Deep Neural Networks (DNN), we aimed to identify the 
most suitable model for our task. Furthermore, hybrid 
models such as CNN-GRU and CNN-BiLSTM were 
considered to harness their potential. 

3.4 Model Optimization  

Concurrently, model optimization took centre stage. 
This phase involved fine-tuning hyperparameters and 
optimizing critical model parameters to improve accuracy 
and reduce loss. Model optimization played a pivotal role in 
achieving the remarkable results observed in our 
experiments. 

3.5 Fine-Tuning 

Our quest for model excellence involved exhaustive 
fine-tuning efforts. We systematically explored variations in 
learning rates, dropout rates, batch sizes, and model 
architectures, acknowledging their substantial influence on 
model performance. Employing cross-validation with 
varying numbers of folds ensured the robustness and 
reliability of our model tuning process. These rigorous fine-
tuning endeavours allowed us to meticulously calibrate our 
models, achieving optimal performance in motor imagery 
classification. 

 
 

3.6 Final Testing and Model Evaluation 
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To validate the robustness of our classification 
framework, we thoughtfully reserved a portion of the dataset 
for final testing. This step was critical to assess the models' 
ability to generalize effectively to unseen data. Model 
evaluation encompassed an array of performance metrics, 
including accuracy, loss, Kappa, F1 Score, Precision, and 
Recall. 

Within this evaluation process, we conducted a 
comprehensive analysis of confusion matrices, shedding 
light on our models' proficiency in classifying motor 
imagery patterns. These matrices offered valuable insights 
into the models' capability to differentiate between distinct 
motor imagery tasks, guiding refinements where necessary. 
This in-depth analysis played a pivotal role in ensuring the 
reliability and effectiveness of our motor imagery 
classification framework. 

In summary, our project journey spanned data collection, 
preprocessing, data augmentation, model training, model 
optimization, fine-tuning, final testing, and comprehensive 
model evaluation. Through a systematic and multifaceted 
approach, we aimed to advance EEG-based motor imagery 
classification, contributing to the broader domain of brain-
computer interfaces (BCIs) and their applications in motor 
imagery. 

Fig. 2. Motor Imagery Classification Process 

In the figure illustrating the motor imagery classification 
process, there are four main sequential steps: 
 

1. Data Collection and Preprocessing: Initially, motor 
imagery data is collected and then subjected to 
preprocessing steps to clean and prepare it for 
analysis. 

2. Feature Engineering: Subsequently, feature 
engineering techniques are applied to extract 
meaningful features from the pre-processed data. 
These features serve as inputs for the classification 
model. 

3. Model Training: In the next stage, a machine 
learning model is trained using the engineered 

features. The model learns to distinguish between 
different motor imagery patterns. 

4. Evaluation: Finally, the trained model undergoes 
evaluation to assess its performance and accuracy in 
classifying motor imagery patterns. This step 
ensures the reliability and effectiveness of the 
classification process. 

 

Fig. 3. Motor Imagery Classification Flowchart 

 
 Data Collection: Gather motor imagery data. 
 Preprocessing & Filtering: Clean and filter the 

data. 
 ML Model Training: Train a machine learning 

model. 
 Accuracy Check: Assess model performance. 
 Fine-Tuning: Adjust parameters if needed. 
 Retraining: Train the model again. 
 High Accuracy: Achieve desired accuracy. 
 Model History: Collect training history. 
 Evaluation: Assess model's performance. 
 Final Testing: Conduct conclusive testing. 

 
The motor imagery classification process involves data 
collection, preprocessing, and filtering. Next, a machine 
learning model is trained, and its accuracy is checked. If the 
accuracy is not satisfactory, fine-tuning and retraining are 
performed iteratively until a high accuracy level is achieved. 
The model's training history is recorded, followed by 
evaluation and final testing steps to ensure reliable results. 

4. Results and Discussion 

In our pursuit of achieving robust motor imagery 
classification, an extensive series of experiments was 
conducted, encompassing a diverse array of methods and 
techniques. The core objective of these experiments was to 
accurately categorize EEG data into specific motor imagery 
task categories associated with bodily movements. This 
endeavour entailed the application of various feature 
engineering methodologies, rigorous model training, fine-
tuning processes, and meticulous evaluation protocols. 
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Table 1 Algorithm Comparison for Task 1 
 

Kappa F1 
Score 

Precision Recall Test 
Loss 

Train 
Accuracy 

Test 
Accuracy  

LSTM 0.669 0.836 0.826 0.847 0.392 87.37 % 83.46 % 

Bi-LSTM 0.643 0.828 0.831 0.81 0.455 91.45 % 83.5 % 

CNN 0.584 0.774 0.847 0.713 0.466 81.99 % 79.25 % 

CNN+GRU 0.66 0.829 0.835 0.822 0.3802 92.34 % 83.02 % 

 

  

Table 2 Algorithm Comparison for Task 2 
 

Kappa F1 
Score 

Precision Recall Test 
Loss 

Train 
Accuracy 

Test 
Accuracy  

LSTM 0.586 0.812 0.784 0.843 0.448 83.71 % 80.00% 

Bi-LSTM 0.584 0.811 0.787 0.835 0.491 83.50 % 79.36% 

CNN 0.491 0.796 0.701 0.919 0.535 78.10 % 77.98 % 

CNN+GRU 0.576 0.796 0.811 0.782 0.434 81.35 % 79.89 % 

 

 

Table 3 Algorithm Comparison for Task 3 
 

Kappa F1 
Score 

Precision Recall Test 
Loss 

Train 
Accuracy 

Test 
Accuracy 

LSTM 0.437 0.731 0.731 0.731 0.556 77.21 % 73.65 % 

Bi-LSTM 0.461 0.711 0.797 0.642 0.584 78.17 % 72.90 % 

CNN 0.422 0.724 0.722 0.726 0.589 70.86 % 71.20 % 

CNN+GRU 0.396 0.741 0.675 0.82 0.591 74.65 % 72.50 % 

 

 

Table 4 Algorithm Comparison for Task 4 
 

Kappa F1 
Score 

Precision Recall Test 
Loss 

Train 
Accuracy 

Test 
Accuracy  

LSTM 0.421 0.711 0.709 0.681 0.571 74.67 % 71.78 % 

Bi-LSTM 0.432 0.722 0.699 0.742 0.555 78.21 % 72.83 % 

CNN 0.337 0.691 0.638 0.753 0.619 69.99 % 67.02 % 

CNN+GRU 0.424 0.701 0.721 0.683 0.578 70.57 % 71.25 % 
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 Tables 2 through 5 provide a comprehensive comparative 
analysis of the algorithms employed across different motor 
imagery tasks. These tables offer a detailed exposition of 
performance metrics, including Kappa, F1 Score, Precision, 
Recall, Test Loss, Train Accuracy, and Test Accuracy. The 
systematic evaluation of diverse models and methodologies 
has yielded invaluable insights into the efficacy of motor 
imagery classification techniques, further enhancing our 
understanding of this critical aspect of our research. 

 
 

4.1. Effectiveness of Feature Engineering 
The experiments demonstrated that the incorporation 

of feature engineering techniques significantly improved 
the classification accuracy across all tasks. The carefully 
crafted feature extraction methods enhanced the models' 
ability to distinguish between different motor imagery 
patterns. 

 
4.2. Improved Test Accuracy  

When compared with results obtained without 
feature engineering, it is evident that the application of 
feature engineering consistently led to higher test 
accuracy levels in all tasks. This underscores the 
importance of preprocessing and feature extraction in 
EEG-based motor imagery classification. 
 
4.3 Optimal Models  

Among the models tested, the Long Short-Term 
Memory (LSTM) and Bidirectional LSTM (Bi-LSTM) 
consistently exhibited the highest test accuracy. These 
models leveraged their ability to capture sequential 
patterns in EEG data, showcasing their suitability for 
motor imagery classification tasks. It's worth noting that 
these models were trained using the Adam optimizer 
with a learning rate of 0.0005 and employed binary 
cross-entropy as the loss function. This configuration 
played a crucial role in achieving the remarkable 
performance observed in the results. 

 

4.4 Generalizability and Robustness 
To ensure the robustness of the classification 

framework, a strategic portion of the dataset was 
reserved for final testing. The results indicated that the 
developed models could generalize well to unseen data, 
reaffirming their potential for real-world applications. 

 
4.5 Continuous Improvement 

It's important to note that the fine-tuning process 
played a pivotal role in achieving the desired accuracy 
levels. Through iterative adjustments of model 
parameters, the learning curves exhibited increasing 
accuracy and decreasing loss, highlighting the 
importance of model optimization. 

 
 

 
 
 
Limitations and Challenges 
 
4 Data Quality and Quantity: The study faced limitations 

related to the quality and quantity of EEG data. Some 
data contained artifacts and noise, which posed 
challenges in achieving accurate classification. 
Additionally, having access to a larger dataset could have 
potentially improve model performance. 

 
5 Feature Engineering: Challenges were encountered 

during the feature engineering process. Implementing 
specific feature extraction techniques proved to be 
complex, and there were computational constraints in 
handling extensive feature sets. 

 

 Fig. 4. Accuracy Evolution - Bi-LSTM model (Task 1) 
 

 Fig. 5. Loss progression - Bi-LSTM model (Task 1) 

 

The first graph displays rising accuracy as the Bi-LSTM 
model classifies Task 1 motor imagery patterns, while the 
second graph shows decreasing loss, indicating improved 
performance. 
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Fig. 6. Confusion Matrix - Bi-LSTM model (Task 1) 
 
The confusion matrix shown in figure 5 provides visual 

insights into classification accuracy of Bi-LSTM model for 
task 1. 

 

 
Fig. 7. Accuracy Evolution - CNN-GRU model (Task 1) 

 
Fig. 8. Loss progression - CNN-GRU model (Task 1)       

 
The first graph illustrates the progressive accuracy 

improvement of the CNN+GRU model during Task 1 motor 

imagery classification training. In contrast, the second graph 
depicts the diminishing loss as the model learns to classify 
Task 1 patterns, signifying enhanced performance over time. 

 
Fig. 9. Confusion Matrix - CNN-GRU model (Task 1) 
 

The confusion matrix shown in figure 7 provides visual 
insights into classification accuracy of CNN+GRU model for 
task 1. 

6 Conclusion 

In the pursuit of advancing motor imagery classification 
within Brain-Computer Interfaces (BCIs), this research 
embarked on a comprehensive exploration. Through a series 
of meticulous experiments and analyses, we have gained 
valuable insights into the realm of EEG-based motor imagery 
classification. 
 

Our experiments encompassed the application of a wide 
array of models, from traditional LSTM to advanced hybrid 
models such as CNN+GRU and Bi-LSTM-CNN. These 
endeavours highlighted the significance of model selection in 
EEG-based motor imagery classification. Notably, we 
achieved the highest test accuracy with LSTM and Bi-LSTM 
models, underscoring their effectiveness in this context. 
 

The integration of feature engineering into our workflow 
yielded promising results, consistently outperforming models 
trained without feature engineering. These findings reinforce 
the importance of data preprocessing and feature extraction in 
enhancing classification accuracy within the motor imagery 
classification domain. 
 
Additionally, the challenges faced during this research, 
including data acquisition limitations, underscore the 
complexities inherent in EEG data collection and the need for
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standardized datasets to foster further research and 
development. 
 

As we conclude this report, it is evident that the journey 
to harness the potential of motor imagery classification is 
ongoing. This research contributes to the existing body of 
knowledge in EEG-based BCIs and motor imagery 
classification, paving the way for future innovations in 
assistive technology, neurorehabilitation, and human-
computer interaction. 
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