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Abstract: This paper provides insights into the captivating field of motor imagery classification within Brain-Computer
Interfaces (BCI). BCIs enable direct human-machine interaction through cognitive processes, with EEG signals decoding
mental intentions with precision. Distinct EEG patterns offer valuable insights, promising intuitive BCl systems. This
technology could revolutionize assistive tech, neurorehabilitation, and human-computer interaction. The paper outlines
our research project, covering motor imagery experiments, data processing, and the development of EEG signal
interpretation models, including feature extraction, algorithms, optimization, and rigorous testing methodologies.
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1. Introduction

The primary objective of this research is to advance
the field of motor imagery (MI) classification by
accurately categorizing EEG data obtained from
participants during cognitive tasks into specific MI task
categories related to bodily movements. EEG signals,
recorded through scalp electrodes, provide sequential
data from multiple participants engaged in these trials
[1]. The MI classification domain has witnessed

significant ~ progress, driven by  innovative
methodologies designed to enhance precision and
efficiency.

Researchers have explored diverse techniques to
address the intricacies of MI classification, such as deep
domain adaptation, Bayesian convolutional neural
networks, and discriminative SPD feature learning
[2]1[3][4]. Hybrid models have also emerged, including
transfer learning-based CNN and LSTM hybrids, as
well as ETSNet for EEG-based temporal-spatial pattern
recognition [8][9]. Additional avenues of exploration
encompass multiwavelet-based sparse time-varying
autoregressive modelling, multivariate variational mode
decomposition, and real-time single-trial EEG analysis
[1O][11][12].

Recent studies have leveraged convolution,
attention mechanisms, autoencoders, and channel selection
to enhance MI classification accuracy [16][17][18]. In this
research project, we contribute to this body of work by
investigating novel methods and techniques for MI
classification. Through meticulous data preprocessing,
feature engineering, model development, and fine-tuning,
we aim to push the boundaries of EEG-based MI
classification. Our strategic allocation of data for final
testing ensures the robustness and generalizability of our
models, aligning with the broader goal of enhancing brain-
computer interfaces (BCls) in the context of motor imagery.

2. Dataset

Obtaining a sufficiently large and well-annotated EEG
dataset for Brain-Computer Interface (BCI) research
presents significant challenges due to the labor-intensive
data collection process and the associated expenses [2]. For
the purposes of our experimental analysis, we utilized the
PhysioNet database [19], which offers a valuable resource
for EEG data. The dataset is provided in EDF+ format and
encompasses 64 EEG signals, each sampled at 160 samples
per second, accompanied by an annotation channel.

The data collection involved subjects performing
various motor and imagery tasks while utilizing the
BCI2000 system. Each subject participated in 14
experimental runs, which comprised two one-minute
baseline runs (one with eyes open and one with eyes closed),
as well as three two-minute runs for each of the following
four tasks:

1. Fist Movement Task: A target appeared on either the
left or the right side of the screen, prompting the
subject to open and close the corresponding fist until
the target disappeared, followed by relaxation.

2. Fist Movement Imagery Task: as the previous task, a
target appeared on the left or right side of the screen.
However, in this case, the subject imagined opening
and closing the corresponding fist until the target
disappeared, followed by relaxation.

3. Foot Movement Task: A target emerged either at the
top or bottom of the screen. The subject was instructed
to open and close both fists (if the target was at the
top) or both feet (if the target was at the bottom) until
the target disappeared, and then relax.

4. Foot Movement Imagery Task: In a manner akin to
the previous task, a target appeared at the top or
bottom of the screen, prompting the subject to imagine



opening and closing either both fists (if the target was
at the top) or both feet (if the target was at the bottom)
until the target disappeared, followed by relaxation.

These tasks are summarized in Table 1 for reference
and provide a rich dataset for investigating motor imagery
classification within the domain of BClISs.

TABLE 1 DETAILS OF VARIOUS TASKS IN THE DATASET

Task Subject Experiment
Task 1

open and close left or right fist

Task 2 imagine opening and closing left or right fist
Task 3 open and close both fists or both feet
Task 4 imagine opening and closing both fists or both

Fig. 1. EEG Electrode System 10-10

The EEG Electrode System 10-10 represents a widely
accepted global standard for meticulous electrode placement
during EEG recordings. This system is distinguished by its
precise arrangement of electrodes at predetermined positions
on the scalp, thereby ensuring consistent and reproducible
measurements across individuals. The nomenclature "10-10"
signifies that electrodes are situated at 10% and 20%
intervals along both the anterior-posterior (AP) and right-left
(RL) dimensions of the head, establishing a standardized
and methodical framework for the positioning of EEG
electrodes. This systematic approach enhances the reliability
and comparability of EEG data acquisition across diverse
research studies and participants.

3. Project Overview

In our pursuit of achieving robust motor imagery
classification, our project unfolded through a series of
foundational stages, each meticulously designed to enhance
the effectiveness of our classification framework:

3.1 Data Collection and Preprocessing

We initiated the project by gathering motor imagery data,
prioritizing data integrity through essential preprocessing
steps. These steps encompassed data parsing, filtering, and
resampling from 160 Hz to 128 Hz. To ensure consistency
for subsequent analyses, we consolidated raw data files into
a single dataset and extracted event annotations.
Subsequently, we segmented the data into epochs, each
spanning a 5-second window around the targeted motor
imagery action, thus ensuring an equitable distribution of
events.

3.2 Data Augmentation

Our data augmentation strategy introduced variability
into the dataset, enriching model generalization capabilities.
A key technique involved random segment trimming before
and after the action period, mimicking variations in the
timing of motor imagery actions. This approach provided
the models with a diversified set of training examples,
fortifying their robustness to cope with real-world scenarios
where action timing may vary.

3.3 Model Training

We partitioned the data into training (80%) and
validation (20%) sets, laying the foundation for model
development. Exploring various deep learning architectures,
including Long Short-Term Memory (LSTM), Bidirectional
LSTM (Bi-LSTM), Convolutional Neural Networks (CNN),
and Deep Neural Networks (DNN), we aimed to identify the
most suitable model for our task. Furthermore, hybrid
models such as CNN-GRU and CNN-BILSTM were
considered to harness their potential.

3.4 Model Optimization

Concurrently, model optimization took centre stage.
This phase involved fine-tuning hyperparameters and
optimizing critical model parameters to improve accuracy
and reduce loss. Model optimization played a pivotal role in
achieving the remarkable results observed in our
experiments.

3.5 Fine-Tuning

Our quest for model excellence involved exhaustive
fine-tuning efforts. We systematically explored variations in
learning rates, dropout rates, batch sizes, and model
architectures, acknowledging their substantial influence on
model performance. Employing cross-validation with
varying numbers of folds ensured the robustness and
reliability of our model tuning process. These rigorous fine-
tuning endeavours allowed us to meticulously calibrate our
models, achieving optimal performance in motor imagery
classification.

3.6 Final Testing and Model Evaluation



To wvalidate the robustness of our classification
framework, we thoughtfully reserved a portion of the dataset
for final testing. This step was critical to assess the models'
ability to generalize effectively to unseen data. Model
evaluation encompassed an array of performance metrics,
including accuracy, loss, Kappa, F1 Score, Precision, and
Recall.

Within this evaluation process, we conducted a
comprehensive analysis of confusion matrices, shedding
light on our models' proficiency in classifying motor
imagery patterns. These matrices offered valuable insights
into the models' capability to differentiate between distinct
motor imagery tasks, guiding refinements where necessary.
This in-depth analysis played a pivotal role in ensuring the
reliability and effectiveness of our motor imagery
classification framework.

In summary, our project journey spanned data collection,
preprocessing, data augmentation, model training, model
optimization, fine-tuning, final testing, and comprehensive
model evaluation. Through a systematic and multifaceted
approach, we aimed to advance EEG-based motor imagery
classification, contributing to the broader domain of brain-
computer interfaces (BCIs) and their applications in motor
imagery.

Motor Imagery Classification
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Fig. 2. Motor Imagery Classification Process

In the figure illustrating the motor imagery classification
process, there are four main sequential steps:

1. Data Collection and Preprocessing: Initially, motor
imagery data is collected and then subjected to
preprocessing steps to clean and prepare it for
analysis.

2. Feature Engineering:  Subsequently, feature
engineering techniques are applied to extract
meaningful features from the pre-processed data.
These features serve as inputs for the classification
model.

3. Model Training: In the next stage, a machine
learning model is trained using the engineered

features. The model learns to distinguish between
different motor imagery patterns.
4. Evaluation: Finally, the trained model undergoes

evaluation to assess its performance and accuracy in
classifying motor imagery patterns. This step
ensures the reliability and effectiveness of the

classification process.
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Fig. 3. Motor Imagery Classification Flowchart

e Data Collection: Gather motor imagery data.

e Preprocessing & Filtering: Clean and filter the
data.

e ML Model Training: Train a machine learning

model.

Accuracy Check: Assess model performance.

Fine-Tuning: Adjust parameters if needed.

Retraining: Train the model again.

High Accuracy: Achieve desired accuracy.

Model History: Collect training history.

Evaluation: Assess model's performance.

Final Testing: Conduct conclusive testing.

The motor imagery classification process involves data
collection, preprocessing, and filtering. Next, a machine
learning model is trained, and its accuracy is checked. If the
accuracy is not satisfactory, fine-tuning and retraining are
performed iteratively until a high accuracy level is achieved.
The model's training history is recorded, followed by
evaluation and final testing steps to ensure reliable results.

4. Results and Discussion

In our pursuit of achieving robust motor imagery
classification, an extensive series of experiments was
conducted, encompassing a diverse array of methods and
techniques. The core objective of these experiments was to
accurately categorize EEG data into specific motor imagery
task categories associated with bodily movements. This
endeavour entailed the application of various feature
engineering methodologies, rigorous model training, fine-
tuning processes, and meticulous evaluation protocols.



Table 1 Algorithm Comparison for Task 1

Kappa F1 Precision Recall Test Train Test
Score Loss Accuracy Accuracy
LSTM 0.669 0.836 0.826 0.847 0.392 87.37 % 83.46 %
Bi-LSTM 0.643 0.828 0.831 0.81 0.455 91.45 % 83.5 %
CNN 0.584 0.774 0.847 0.713 0.466 81.99 % 79.25 %
CNN+GRU 0.66 0.829 0.835 0.822 0.3802 92.34 % 83.02 %
Table 2 Algorithm Comparison for Task 2
Kappa F1 Precision Recall Test Train Test
Score Loss Accuracy Accuracy
LSTM 0.586 0.812 0.784 0.843 0.448 83.71 % 80.00%
Bi-LSTM 0.584 0.811 0.787 0.835 0.491 83.50 % 79.36%
CNN 0.491 0.796 0.701 0.919 0.535 78.10 % 77.98 %
CNN+GRU 0.576 0.796 0.811 0.782 0.434 81.35% 79.89 %
Table 3 Algorithm Comparison for Task 3
Kappa F1 Precision Recall Test Train Test
Score Loss Accuracy Accuracy
LSTM 0.437 0.731 0.731 0.731 0.556 7721 % 73.65 %
Bi-LSTM 0.461 0.711 0.797 0.642 0.584 78.17 % 72.90 %
CNN 0.422 0.724 0.722 0.726  0.589 70.86 % 71.20 %
CNN+GRU 0.396 0.741 0.675 0.82 0.591 74.65 % 72.50 %
Table 4 Algorithm Comparison for Task 4
Kappa F1 Precision Recall Test Train Test
Score Loss Accuracy Accuracy
LSTM 0.421 0.711 0.709 0.681 0.571 74.67 % 71.78 %
Bi-LSTM 0.432 0.722 0.699 0.742 0.555 7821 % 72.83 %
CNN 0.337 0.691 0.638 0.753 0.619 69.99 % 67.02 %
CNN+GRU 0.424 0.701 0.721 0.683 0.578 70.57 % 71.25 %




Tables 2 through 5 provide a comprehensive comparative
analysis of the algorithms employed across different motor
imagery tasks. These tables offer a detailed exposition of
performance metrics, including Kappa, F1 Score, Precision,
Recall, Test Loss, Train Accuracy, and Test Accuracy. The
systematic evaluation of diverse models and methodologies
has yielded invaluable insights into the efficacy of motor
imagery classification techniques, further enhancing our
understanding of this critical aspect of our research.

4.1. Effectiveness of Feature Engineering

The experiments demonstrated that the incorporation
of feature engineering techniques significantly improved
the classification accuracy across all tasks. The carefully
crafted feature extraction methods enhanced the models'
ability to distinguish between different motor imagery
patterns.

4.2. Improved Test Accuracy

When compared with results obtained without
feature engineering, it is evident that the application of
feature engineering consistently led to higher test
accuracy levels in all tasks. This underscores the
importance of preprocessing and feature extraction in
EEG-based motor imagery classification.

4.3 Optimal Models

Among the models tested, the Long Short-Term
Memory (LSTM) and Bidirectional LSTM (Bi-LSTM)
consistently exhibited the highest test accuracy. These
models leveraged their ability to capture sequential
patterns in EEG data, showcasing their suitability for
motor imagery classification tasks. It's worth noting that
these models were trained using the Adam optimizer
with a learning rate of 0.0005 and employed binary
cross-entropy as the loss function. This configuration
played a crucial role in achieving the remarkable
performance observed in the results.

4.4 Generalizability and Robustness

To ensure the robustness of the classification
framework, a strategic portion of the dataset was
reserved for final testing. The results indicated that the
developed models could generalize well to unseen data,
reaffirming their potential for real-world applications.

4.5 Continuous Improvement

It's important to note that the fine-tuning process
played a pivotal role in achieving the desired accuracy
levels. Through iterative adjustments of model
parameters, the learning curves exhibited increasing
accuracy and decreasing loss, highlighting the
importance of model optimization.

Limitations and Challenges

4

Data Quality and Quantity: The study faced limitations
related to the quality and quantity of EEG data. Some
data contained artifacts and noise, which posed
challenges in achieving accurate classification.
Additionally, having access to a larger dataset could have
potentially improve model performance.

Feature Engineering: Challenges were encountered
during the feature engineering process. Implementing
specific feature extraction techniques proved to be
complex, and there were computational constraints in
handling extensive feature sets.
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Fig. 4. Accuracy Evolution - Bi-LSTM model (Task 1)
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Fig. 5. Loss progression - Bi-LSTM model (Task 1)

The first graph displays rising accuracy as the Bi-LSTM

model classifies Task 1 motor imagery patterns, while the
second graph shows decreasing loss, indicating improved
performance.
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Fig. 6. Confusion Matrix - Bi-LSTM model (Task 1)

The confusion matrix shown in figure 5 provides visual
insights into classification accuracy of Bi-LSTM model for
task 1.
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Fig. 7. Accuracy Evolution - CNN-GRU model (Task 1)
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Fig. 8. Loss progression - CNN-GRU model (Task 1)

The first graph illustrates the progressive accuracy
improvement of the CNN+GRU model during Task 1 motor

imagery classification training. In contrast, the second graph
depicts the diminishing loss as the model learns to classify
Task 1 patterns, signifying enhanced performance over time.
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Fig. 9. Confusion Matrix - CNN-GRU model (Task 1)

The confusion matrix shown in figure 7 provides visual
insights into classification accuracy of CNN+GRU model for
task 1.

6 Conclusion

In the pursuit of advancing motor imagery classification
within Brain-Computer Interfaces (BCIs), this research
embarked on a comprehensive exploration. Through a series
of meticulous experiments and analyses, we have gained
valuable insights into the realm of EEG-based motor imagery
classification.

Our experiments encompassed the application of a wide
array of models, from traditional LSTM to advanced hybrid
models such as CNN+GRU and Bi-LSTM-CNN. These
endeavours highlighted the significance of model selection in
EEG-based motor imagery classification. Notably, we
achieved the highest test accuracy with LSTM and Bi-LSTM
models, underscoring their effectiveness in this context.

The integration of feature engineering into our workflow
yielded promising results, consistently outperforming models
trained without feature engineering. These findings reinforce
the importance of data preprocessing and feature extraction in
enhancing classification accuracy within the motor imagery
classification domain.

Additionally, the challenges faced during this research,
including data acquisition limitations, underscore the
complexities inherent in EEG data collection and the need for



standardized datasets to foster further research and
development.

As we conclude this report, it is evident that the journey
to harness the potential of motor imagery classification is
ongoing. This research contributes to the existing body of
knowledge in EEG-based BCIs and motor imagery
classification, paving the way for future innovations in
assistive technology, neurorehabilitation, and human-
computer interaction.
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